Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Csikász-Nagy, Attila (Ed.)The cell cycle consists of a series of orchestrated events controlled by molecular sensing and feedback networks that ultimately drive the duplication of total DNA and the subsequent division of a single parent cell into two daughter cells. The ability to block the cell cycle and synchronize cells within the same phase has helped understand factors that control cell cycle progression and the properties of each individual phase. Intriguingly, when cells are released from a synchronized state, they do not maintain synchronized cell division and rapidly become asynchronous. The rate and factors that control cellular desynchronization remain largely unknown. In this study, using a combination of experiments and simulations, we investigate the desynchronization properties in cervical cancer cells (HeLa) starting from the G1/S boundary following double-thymidine block. Propidium iodide (PI) DNA staining was used to perform flow cytometry cell cycle analysis at regular 8 hour intervals, and a custom auto-similarity function to assess the desynchronization and quantify the convergence to an asynchronous state. In parallel, we developed a single-cell phenomenological model the returns the DNA amount across the cell cycle stages and fitted the parameters using experimental data. Simulations of population of cells reveal that the cell cycle desynchronization rate is primarily sensitive to the variability of cell cycle duration within a population. To validate the model prediction, we introduced lipopolysaccharide (LPS) to increase cell cycle noise. Indeed, we observed an increase in cell cycle variability under LPS stimulation in HeLa cells, accompanied with an enhanced rate of cell cycle desynchronization. Our results show that the desynchronization rate of artificially synchronized in-phase cell populations can be used a proxy of the degree of variance in cell cycle periodicity, an underexplored axis in cell cycle research.more » « less
-
Csikász-Nagy, Attila (Ed.)The ubiquitous existence of microbial communities marks the importance of understanding how species interact within the community to coexist and their spatial organization. We study a two-species mutualistic cross-feeding model through a stochastic cellular automaton on a square lattice using kinetic Monte Carlo simulation. Our model encapsulates the essential dynamic processes such as cell growth, and nutrient excretion, diffusion and uptake. Focusing on the interplay among nutrient diffusion and individual cell division, we discover three general classes of colony morphology: co-existing sectors, co-existing spirals, and engulfment. When the cross-feeding nutrient is widely available, either through high excretion or fast diffusion, a stable circular colony with alternating species sector emerges. When the consumer cells rely on being spatially close to the producers, we observe a stable spiral. We also see one species being engulfed by the other when species interfaces merge due to stochastic fluctuation. By tuning the diffusion rate and the growth rate, we are able to gain quantitative insights into the structures of the sectors and the spirals.more » « less
-
Csikász-Nagy, Attila (Ed.)Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small “core” network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, I terative N etwork H ypoth e sis Re ductio n from T emporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.more » « less
-
Csikász-Nagy, Attila (Ed.)The Notch-Delta signaling pathway mediates cell differentiation implicated in many regulatory processes including spatiotemporal patterning in tissues by promoting alternate cell fates between neighboring cells. At the multicellular level, this "lateral inhibition” principle leads to checkerboard patterns with alternation of Sender and Receiver cells. While it is well known that stochasticity modulates cell fate specification, little is known about how stochastic fluctuations at the cellular level propagate during multicell pattern formation. Here, we model stochastic fluctuations in the Notch-Delta pathway in the presence of two different noise types–shot and white–for a multicell system. Our results show that intermediate fluctuations reduce disorder and guide the multicell lattice toward checkerboard-like patterns. By further analyzing cell fate transition events, we demonstrate that intermediate noise amplitudes provide enough perturbation to facilitate “proofreading” of disordered patterns and cause cells to switch to the correct ordered state (Sender surrounded by Receivers, and vice versa). Conversely, high noise can override environmental signals coming from neighboring cells and lead to switching between ordered and disordered patterns. Therefore, in analogy with spin glass systems, intermediate noise levels allow the multicell Notch system to escape frustrated patterns and relax towards the lower energy checkerboard pattern while at large noise levels the system is unable to find this ordered base of attraction.more » « less
-
Csikász-Nagy, Attila (Ed.)Differential sensitivity analysis is indispensable in fitting parameters, understanding uncertainty, and forecasting the results of both thought and lab experiments. Although there are many methods currently available for performing differential sensitivity analysis of biological models, it can be difficult to determine which method is best suited for a particular model. In this paper, we explain a variety of differential sensitivity methods and assess their value in some typical biological models. First, we explain the mathematical basis for three numerical methods: adjoint sensitivity analysis, complex perturbation sensitivity analysis, and forward mode sensitivity analysis. We then carry out four instructive case studies. (a) The CARRGO model for tumor-immune interaction highlights the additional information that differential sensitivity analysis provides beyond traditional naive sensitivity methods, (b) the deterministic SIR model demonstrates the value of using second-order sensitivity in refining model predictions, (c) the stochastic SIR model shows how differential sensitivity can be attacked in stochastic modeling, and (d) a discrete birth-death-migration model illustrates how the complex perturbation method of differential sensitivity can be generalized to a broader range of biological models. Finally, we compare the speed, accuracy, and ease of use of these methods. We find that forward mode automatic differentiation has the quickest computational time, while the complex perturbation method is the simplest to implement and the most generalizable.more » « less
-
Csikász-Nagy, Attila (Ed.)The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus . Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms.more » « less
-
Csikász-Nagy, Attila (Ed.)Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a “sizer” and an “adder”). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies.more » « less
-
Csikász-Nagy, Attila (Ed.)Bacteria use two-component systems (TCSs) to sense environmental conditions and change gene expression in response to those conditions. To amplify cellular responses, many bacterial TCSs are under positive feedback control, i.e. increase their expression when activated. Escherichia coli Mg 2+ -sensing TCS, PhoPQ, in addition to the positive feedback, includes a negative feedback loop via the upregulation of the MgrB protein that inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynamical responses of PhoPQ TCS to change in Mg 2+ remains poorly understood. In particular, how the presence of MgrB feedback affects the robustness of PhoPQ response to overexpression of TCS is unclear. It is also unclear why the steady-state response to decreasing Mg 2+ is biphasic, i.e. plateaus over a range of Mg 2+ concentrations, and then increases again at growth-limiting Mg 2+ . In this study, we use mathematical modeling to identify potential mechanisms behind these experimentally observed dynamical properties. The results make experimentally testable predictions for the regime with response robustness and propose a novel explanation of biphasic response constraining the mechanisms for modulation of PhoQ activity by Mg 2+ and MgrB. Finally, we show how the interplay of positive and negative feedback loops affects the network’s steady-state sensitivity and response dynamics. In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a general mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results improve the understanding of TCS signaling and other networks with overlaid positive and negative feedback.more » « less
-
Csikász-Nagy, Attila (Ed.)Which suggestions for behavioral modifications, based on mathematical models, are most likely to be followed in the real world? We address this question in the context of human circadian rhythms. Jet lag is a consequence of the misalignment of the body’s internal circadian (~24-hour) clock during an adjustment to a new schedule. Light is the clock’s primary synchronizer. Previous research has used mathematical models to compute light schedules that shift the circadian clock to a new time zone as quickly as possible. How users adjust their behavior when provided with these optimal schedules remains an open question. Here, we report data collected by wearables from more than 100 travelers as they cross time zones using a smartphone app, Entrain . We find that people rarely follow the optimal schedules generated through mathematical modeling entirely, but travelers who better followed the optimal schedules reported more positive moods after their trips. Using the data collected, we improve the optimal schedule predictions to accommodate real-world constraints. We also develop a scheduling algorithm that allows for the computation of approximately optimal schedules "on-the-fly" in response to disruptions. User burnout may not be critically important as long as the first parts of a schedule are followed. These results represent a crucial improvement in making the theoretical results of past work viable for practical use and show how theoretical predictions based on known human physiology can be efficiently used in real-world settings.more » « less
An official website of the United States government
